World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Efficient Kernel Extreme Learning Machine and Neutrosophic C-means-based Attribute Weighting Method for Medical Data Classification

    https://doi.org/10.1142/S0218126620502606Cited by:5 (Source: Crossref)

    This paper proposes an integrated system neutrosophic C-means-based attribute weighting-kernel extreme learning machine (NCMAW-KELM) for medical data classification using NCM clustering and KELM. To do that, NCMAW is developed, and then combined with classification method in classification of medical data. The proposed approach contains two steps. In the first step, input attributes are weighted using NCMAW method. The purpose of the weighting method is twofold: (i) to improve the classification performance in the classification of the medical data, (ii) to transform from nonlinearly separable dataset to linearly separable dataset. Finally, KELM algorithm is used for medical data classification purpose. In KELM algorithm, four types of kernels, such as Polynomial, Sigmoid, Radial basis function and Linear, are used. The simulation result on our three datasets demonstrates that the sigmoid kernel is outperformed to ELM in most cases. From the results, NCMAW-KELM approach may be a promising method in medical data classification problem.

    This paper was recommended by Regional Editor Tongquan Wei.