World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Color Image Segmentation by Utilizing Coarse-to-Fine Strategy

    https://doi.org/10.1142/S0218126622501237Cited by:1 (Source: Crossref)

    Image segmentation is an important processing technology, which is the basis of image recognition and has been widely used in many fields. In this paper, we propose a method, termed coarse-to-fine strategy-based image segmentation (CSIS), for color image segmentation. The basic idea is to segment an image by three phases: (1) the original image is first segmented into several distinct regions by using the mean shift method; (2) the segmented regions are converted to a weighted region adjacency graph (RAG), and a new graph cut method, called multi-cut algorithm, is proposed to partition the RAG into multiple regions; (3) a one-step Chan–Vese algorithm is applied to smooth the boundaries of the segmented objectives. In each of the last two phases, a method is applied to refine the result obtained in the previous phase. By carefully balancing the efforts used in each phase, CSIS could segment color images both efficiently and effectively. These advantages are demonstrated by applying the proposed method to a variety of test instances, and the statistical results also show that it is comparable with some state-of-the-art methods.

    This paper was recommended by Regional Editor Tongquan Wei.