World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An Ultra-Fast Authenticated Encryption Scheme with Associated Data Using AES-OTR

    https://doi.org/10.1142/S0218126622501675Cited by:4 (Source: Crossref)

    Applications relying on the Ethernet IEEE 802.3ba and IEEE802.3b standards require secure data encryption and authentication at extremely high speeds (at least 100 Gbit/s). The Galois/Counter Mode (GCM) is currently considered the de facto standard for hardware high-speed authenticated encryption, although other algorithms have been proposed in the literature such as the Offset Codebook Mode (OCB). The challenge in terms of providing security for high-speed applications is to achieve implementations that explore the parallelism of these algorithms; however, this translates into area cost. In this work, we propose an alternative to GCM and OCB. We show that a combination of the Offset Two-Round authenticated-encryption scheme with the AES block cipher (known as AES-OTR) is exceptionally well suited for exploiting fine-grained parallelism, and can therefore be used to achieve ultra-high-speed data encryption rates. The experiments reported in this paper show that our pipeline-parallel implementation of AES-OTR outperforms the GCM and OCB schemes in terms of throughput per area while using almost half of the logic resources. Our implementation used a Stratix 4 FPGA device as well as several devices from the Virtex family. Implementations of AES-OTR on Stratix 4 used 11kALMs and achieved a throughput of 143.65 Gbit/s. On the Virtex Ultrascale, our design used 31,859 LUTs with a throughput of 204.92 Gbit/s.

    This paper was recommended by Regional Editor Emre Salman.