Design and Implementation of Face Detection Architecture for Heterogeneous System-on-Chip
Abstract
The seminal work of Viola and Jones for automatic face detection is widely used in many human–computer interaction and computer vision applications. On analyzing the existing face detection architectures, we observed that integral image calculation, feature computation in cascaded classifier, and recursive scanning of image with sliding window at multiple scales are the major reasons which increase the memory and time complexity of the algorithm. Therefore, in this paper, we have proposed a hardware–software co-design of Viola–Jones face detector for System-on-Chip (SoC). In the proposed architecture, integral image computation and cascaded classifier sub-modules are implemented on the hardware — Programmable Logic FPGA (PL-FPGA), while the image scaling and nonmaximum suppression sub-modules are implemented on the software — Processing System ARM (PS-ARM). Concepts of pipelining, folding, and parallel processing are effectively utilized to produce an optimum design architecture. The proposed architecture has been tested on PYNQ-Z1 board. The implementation results in a processing speed of 95 fps with PL and PS clocks of 100MHz and 650MHz, respectively, for an image of QVGA resolution. Results analysis demonstrates that the proposed architecture has minimum resource requirement as compared to state-of-the-art implementations, which facilitates and promotes the usage of resource-constrained low-cost ZYNQ SoC for face detection.
This paper was recommended by Regional Editor Zoran Stamenkovic.