Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Design and Implementation of Face Detection Architecture for Heterogeneous System-on-Chip

    https://doi.org/10.1142/S0218126623500214Cited by:1 (Source: Crossref)

    The seminal work of Viola and Jones for automatic face detection is widely used in many human–computer interaction and computer vision applications. On analyzing the existing face detection architectures, we observed that integral image calculation, feature computation in cascaded classifier, and recursive scanning of image with sliding window at multiple scales are the major reasons which increase the memory and time complexity of the algorithm. Therefore, in this paper, we have proposed a hardware–software co-design of Viola–Jones face detector for System-on-Chip (SoC). In the proposed architecture, integral image computation and cascaded classifier sub-modules are implemented on the hardware — Programmable Logic FPGA (PL-FPGA), while the image scaling and nonmaximum suppression sub-modules are implemented on the software — Processing System ARM (PS-ARM). Concepts of pipelining, folding, and parallel processing are effectively utilized to produce an optimum design architecture. The proposed architecture has been tested on PYNQ-Z1 board. The implementation results in a processing speed of 95 fps with PL and PS clocks of 100MHz and 650MHz, respectively, for an image of QVGA resolution. Results analysis demonstrates that the proposed architecture has minimum resource requirement as compared to state-of-the-art implementations, which facilitates and promotes the usage of resource-constrained low-cost ZYNQ SoC for face detection.

    This paper was recommended by Regional Editor Zoran Stamenkovic.