World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Dynamic Virtual Machine Allocation in Cloud Computing Using Elephant Herd Optimization Scheme

    https://doi.org/10.1142/S0218126623501888Cited by:1 (Source: Crossref)

    Cloud computing is a computing technology that is expeditiously evolving. Cloud is a type of distributed computing system that provides a scalable computational resource on demand including storage, processing power and applications as a service via Internet. Cloud computing, with the assistance of virtualization, allows for transparent data and service sharing across cloud users, as well as access to thousands of machines in a single event. Virtual machine (VM) allocation is a difficult job in virtualization that is governed as an important aspect of VM migration. This process is performed to discover the optimum way to place VMs on physical machines (PMs) since it has clear implications for resource usage, energy efficiency, and performance of several applications, among other things. Hence an efficient VM placement problem is required. This paper presents a VM allocation technique based on the elephant herd optimization scheme. The proposed method is evaluated using real-time workload traces and the empirical results show that the proposed method reduces energy consumption, and maximizes resource utilization when compared to the existing methods.

    This paper was recommended by Regional Editor Takuro Sato.