World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Design and Performance Analysis of Polarity Control Junctionless TFET (PC-JL-TFET)-Based Biosensor

    https://doi.org/10.1142/S021812662450302XCited by:0 (Source: Crossref)

    This paper proposes a novel polarity-control junctionless tunnel field-effect transistor (PC-JL-TFET)-based biosensor for the label-free detection of biomolecule species in efficient ways. Unlike conventional designs, the polarity-control concept induces the generation of drain (n+) and source (p+) regions inside the proposed structure when a bias of 1.2 V is applied at the polarity gates-1/2 (PG-1/2), to form a conventional TFET. To capture the biomolecules, a nano-cavity is created within the source region’s dielectric oxide toward the tunneling interface. The presence of biomolecules is electronically detected based on either solely the dielectric constant (neutral biomolecules) or the combination of charge density and dielectric constant (charged biomolecules). The proposed device can perform label-free recognition of biomolecules such as Uricase, Keratin, Biotin, Streptavidin and so on. To investigate the sensing performance of the proposed biosensor, significant biosensing metrics such as the electric field, energy band diagram, tunneling current, subthreshold slope, ION/IOFF ratio and threshold voltage have been studied. The proposed PC-JL-TFET biosensor achieves a maximum sensitivity of 5.31×1010 for neutral biomolecules with a dielectric constant of 12 and 1.11×1010 for negatively charged biomolecules (1×1012C/cm2) with a dielectric constant of 8. The proposed biosensor’s selectivity, linearity and temperature-based analysis have also been evaluated for different biomolecules. Additionally, real-time practical scenarios, such as partially filled nano-cavities and the random position of biomolecules in the nano-cavity-based analysis, have also been incorporated.

    This paper was recommended by Regional Editor Giuseppe Ferri.