World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DARBOUX INTEGRABILITY FOR THE RÖSSLER SYSTEM

    https://doi.org/10.1142/S0218127402004474Cited by:19 (Source: Crossref)

    In this note we characterize all generators of Darboux polynomials of the Rössler system by using weight homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations. As a corollary we prove that the Rössler system is not algebraically integrable, and that every rational first integral is a rational function in the variable x2+y2+2z. Moreover, we characterize the topological phase portrait of the Darboux integrable Rössler system.