World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FRACTALS IN AN ELECTRONIC CIRCUIT WITH BY SWITCHING INPUTS

    https://doi.org/10.1142/S0218127402004772Cited by:8 (Source: Crossref)

    We have proposed a process of generating fractals not from the results of chaotic dynamics, but from the switching of ordinary differential equations. This paper experimentally and numerically analyzes the dynamics of an electronic circuit driven by stochastically switching inputs. The following two results are obtained. First, the dynamics is characterized by a set Γ(C) of trajectories in the cylindrical phase space, where C is a set of initial states on the Poincaré section. Γ(C) and C are attractive and unique invariant fractal sets that satisfy specific equations. The second result is that the correlation dimension of C is in inverse proportion to the interval of the switching inputs. These two findings move beyond the conventional theory based on contraction maps. It should be noted that the set C is constructed by noncontraction maps.