GENERAL RELATIVITY AND SECTIONAL CURVATURE
Abstract
A discussion is given of the sectional curvature function on a four-dimensional Lorentz manifold and, in particular, on the space–time of Einstein's general relativity theory. Its tight relationship to the metric tensor is demonstrated and some of its geometrical and algebraic properties evaluated. The concept of a sectional curvature preserving symmetry, in the form of a certain smooth vector field, is introduced and discussed.