World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SETS OF PERIODS FOR PIECEWISE MONOTONE TREE MAPS

    https://doi.org/10.1142/S021812740300656XCited by:4 (Source: Crossref)

    We study the set of periods of tree maps f : T → T which are monotone between any two consecutive points of a fixed periodic orbit P. This set is characterized in terms of some integers which depend only on the combinatorics of f|P and the topological structure of T. In particular, a typep ≥ 1 of P is defined as a generalization of the notion introduced by Baldwin in his characterization of the set of periods of star maps. It follows that there exists a divisor k of the period of P such that if the set of periods of f is not finite then it contains either all the multiples of kp or an initial segment of the kp≥ Baldwin's ordering, except for a finite set which is explicitly bounded. Conversely, examples are given where f has precisely these sets of periods.