SLIDING BIFURCATIONS: A NOVEL MECHANISM FOR THE SUDDEN ONSET OF CHAOS IN DRY FRICTION OSCILLATORS
Abstract
Recent investigations of nonsmooth dynamical systems have resulted in the study of a class of novel bifurcations termed as sliding bifurcations. These bifurcations are a characteristic feature of so-called Filippov systems, that is, systems of ordinary differential equations (ODEs) with discontinuous right-hand sides. In this paper we show that sliding bifurcations also play an important role in organizing the dynamics of dry friction oscillators, which are a subclass of nonsmooth systems. After introducing the possible codimension-1 sliding bifurcations of limit cycles, we show that these bifurcations organize different types of "slip to stick-slip" transitions in dry friction oscillators. In particular, we show both numerically and analytically that a sliding bifurcation is an important mechanism causing the sudden jump to chaos previously unexplained in the literature on friction systems. To analyze such bifurcations we make use of a new analytical method based on the study of appropriate normal form maps describing sliding bifurcations. Also, we explain the circumstances under which the theory of so-called border-collision bifurcations can be used in order to explain the onset of complex behavior in stick-slip systems.