World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TRACKING CONTROL OF NONLINEAR SYSTEMS: A SLIDING MODE DESIGN VIA CHAOTIC OPTIMIZATION

    https://doi.org/10.1142/S0218127404009909Cited by:6 (Source: Crossref)

    The output tracking for a general family of nonlinear systems presents formidable technical challenges. In this paper, we present a novel scheme for tracking control of a class of affine nonlinear systems with multi-inputs. This effective procedure is based on a new sliding mode design for tracking control of such nonlinear systems. The construction of an optimal sliding mode is a difficult problem and no systematic and efficient method is currently available. Here, we develop an innovative approach that utilizes a chaotic optimizing algorithm, which is then successfully applied to obtain the optimal sliding manifold. The existing efficient reaching law approach is then utilized to synthesize the sliding mode control law. The sliding mode control scheme proposed here is particularly appropriate for robust tracking of the chaotic motion trajectory.

    Supported by the US Army Research Office under Grant DAAD 19-02-1-0321.