World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHAOTIC BEHAVIOR OF INTERVAL MAPS AND TOTAL VARIATIONS OF ITERATES

    https://doi.org/10.1142/S0218127404010540Cited by:39 (Source: Crossref)

    Interval maps reveal precious information about the chaotic behavior of general nonlinear systems. If an interval map f:I→I is chaotic, then its iterates fn will display heightened oscillatory behavior or profiles as n→∞. This manifestation is quite intuitive and is, here in this paper, studied analytically in terms of the total variations of fn on subintervals. There are four distinctive cases of the growth of total variations of fn as n→∞:

    (i) the total variations of fn on I remain bounded;

    (ii) they grow unbounded, but not exponentially with respect to n;

    (iii) they grow with an exponential rate with respect to n;

    (iv) they grow unbounded on every subinterval of I.

    We study in detail these four cases in relations to the well-known notions such as sensitive dependence on initial data, topological entropy, homoclinic orbits, nonwandering sets, etc. This paper is divided into three parts. There are eight main theorems, which show that when the oscillatory profiles of the graphs of fn are more extreme, the more complex is the behavior of the system.