DYNAMICS OF PIECEWISE LINEAR DISCONTINUOUS MAPS
Abstract
In this paper, the dynamics of maps representing classes of controlled sampled systems with backlash are examined. First, a bilinear one-dimensional map is considered, and the analysis shows that, depending on the value of the control parameter, all orbits originating in an attractive set are either periodic or dense on the attractor. Moreover, the dense orbits have sensitive dependence on initial data, but behave rather regularly, i.e. they have quasiperiodic subsequences and the Lyapunov exponent of every orbit is zero. The inclusion of a second parameter, the processing delay, in the model leads to a piecewise linear two-dimensional map. The dynamics of this map are studied using numerical simulations which indicate similar behavior as in the one-dimensional case.