World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHEN'S ATTRACTOR EXISTS

    https://doi.org/10.1142/S0218127404011296Cited by:123 (Source: Crossref)

    By applying the undetermined coefficient method, this paper finds homoclinic and heteroclinic orbits in the Chen system. It analytically demonstrates that the Chen system has one heteroclinic orbit of Ši'lnikov type that connects two nontrivial singular points. The Ši'lnikov criterion guarantees that the Chen system has Smale horseshoes and the horseshoe chaos. In addition, there also exists one homoclinic orbit joined to the origin. The uniform convergence of the series expansions of these two types of orbits are proved in this paper. It is shown that the heteroclinic and homoclinic orbits together determine the geometric structure of Chen's attractor.