World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ZEROS AND RELATIVE DEGREE ASSIGNMENTS OF ADAPTIVE CHAOTIC COMMUNICATION SYSTEMS

    https://doi.org/10.1142/S0218127404011971Cited by:4 (Source: Crossref)

    A general methodology for designing chaotic and hyperchaotic cryptosystems has been developed using the control systems theory. Grassi et al. proposed a nonlinear-observer-based decrypter for the state of an encrypter. If we can design the decrypter without the knowledge of the parameters of the encrypter, the chaos-based secure communication systems are not secure. In this paper, we have designed an observer-based chaotic communication system, which allows us to assign the relative degree and the zeros of its encrypter system. Moreover, under some conditions, we have designed an adaptive decrypter using the adaptive parameter adjustment law based on a Riccati equation when the transfer function of the encrypter is of minimal-phase type. The simulations via MATLAB/Simulink suggest that the encrypter dynamics should be designed such that its relative degree is more than 2 and its zeros are unstable so as to fail to synchronize the cryptosystem for the intruders.