World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

RECURRENCE OF ORDER IN CHAOS

    https://doi.org/10.1142/S021812740501371XCited by:11 (Source: Crossref)

    The standard map x′ = x + y′, y′ = y + (K/2π)sin(2πx), where both x and y are given modulo 1, becomes mostly chaotic for K ≥ 8, but important islands of stability appear in a recurrent way for values of K near K = 2nπ (groups of islands I and II), and K = (2n + 1)π (group III), where n ≥ 1. The maximum areas of the islands and the intervals ΔK, where the islands appear, follow power laws. The changes of the areas of the islands around a maximum follow universal patterns. All islands surround stable periodic orbits. Most of the orbits are irregular, i.e. unrelated to the orbits of the unperturbed problem K = 0. The main periodic orbits of periods 1, 2 and 4 and their stability are derived analytically. As K increases these orbits become unstable and they are followed by infinite period-doubling bifurcations with a bifurcation ratio δ = 8.72. We find theoretically the connections between the various families and the extent of their stability. Numerical calculations verify the theoretical results.