World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

REACTION PATHS AND ELEMENTARY BIFURCATIONS TRACKS: THE DIABATIC 1B2-STATE OF OZONE

    https://doi.org/10.1142/S0218127406015799Cited by:14 (Source: Crossref)

    Bifurcations of equilibrium points and periodic orbits are common in nonlinear dynamical systems when some parameters change. The vibrational motions of a molecule are nonlinear, and the bifurcation phenomena are seen in spectroscopy and chemical reactions. Bifurcations may lead to energy localization in specific bonds, and thus, they have important consequences for elementary chemical reactions, such as isomerization and dissociation/association. In this article we investigate how elementary bifurcations, such as saddle-node and pitchfork bifurcations, appear in small molecules and show their manifestations in the quantum mechanical frequencies and in the topology of wave functions. We present the results of classical and quantum mechanical calculations on a new (diabatic) potential energy surface of ozone for the 1B2 state.This excited electronic state of ozone is pertinent for the absorption of the harmful UV radiation from the sun. We demonstrate that regular localized overtone states, which extend from the bottom of the well up to the dissociation or isomerization barrier, are associated with families of periodic orbits emanated from elementary bifurcations.