World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TURING PATTERNS IN RD-CNNs FOR THE EMERGENCE OF PERCEPTUAL STATES IN ROVING ROBOTS

    https://doi.org/10.1142/S0218127407017203Cited by:18 (Source: Crossref)

    Behavior-based robotics considers perception as a holistic process, strongly connected to behavioral needs of the robot. We present a bio-inspired framework for sensing-perception-action, applied to a roving robot in a random foraging task. Perception is here considered as a complex and emergent phenomenon where a huge amount of information coming from sensors is used to form an abstract and concise representation of the environment, useful to take a suitable action or sequence of actions. In this work a model for perceptual representation is formalized by means of RD-CNNs showing Turing patterns. They are used as attractive states for particular set of environmental conditions in order to associate, via a reinforcement learning, a proper action. Learning is also introduced at the afferent stage to shape the environment information according to the particular emerging pattern. The basins of attraction for the Turing patterns are so dynamically tuned by an unsupervised learning in order to form an internal, abstract and plastic representation of the environment, as recorded by the sensors.