World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NONSTANDARD DISCRETIZATION SCHEMES APPLIED TO THE CONSERVATIVE HÉNON–HEILES SYSTEM

    https://doi.org/10.1142/S0218127407017616Cited by:8 (Source: Crossref)

    The discretization of ordinary differential equations is investigated for the case of the conservative Hénon–Heiles system. Starting from a discrete Hamiltonian function, which is invariant under time reversal, discrete equations of motion are analytically obtained using three different discretization schemes recently proposed and investigated in the literature. In the case where the discretization scheme successfully provide discrete systems in which the trace of the Jacobian matrix corresponding to the property required by a conservative system is preserved, it is shown that they are not necessarily invariant to time reversal. Such models are however quite robust when the time step is increased. For the schemes where the trace of Jacobian matrix does not match the condition required by conservative systems, it is shown that energy conservation is not achieved and the original dynamics is lost. Steps toward the solution to this problem are given.