BORDER COLLISION BIFURCATIONS IN THREE-DIMENSIONAL PIECEWISE SMOOTH SYSTEMS
Abstract
Piecewise smooth maps have been a focus of study for scientists in a wide range of research fields. These maps show qualitatively different types of bifurcations than those exhibited by generic smooth maps. We present a theoretical framework for analyzing three-dimensional piecewise smooth maps by deriving a suitable normal form and then finding the stability criteria for periodic orbits. We also show by numerical simulation different types of border collision bifurcations that can occur in such a map. We have also been able to observe a border collision bifurcation from a period-2 to a quasiperiodic orbit.