World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THREE-DIMENSIONAL CELLULAR NEURAL NETWORKS AND PATTERN GENERATION PROBLEMS

    https://doi.org/10.1142/S0218127408020781Cited by:5 (Source: Crossref)

    This work investigates three-dimensional pattern generation problems and their applications to three-dimensional Cellular Neural Networks (3DCNN). An ordering matrix for the set of all local patterns is established to derive a recursive formula for the ordering matrix of a larger finite lattice. For a given admissible set of local patterns, the transition matrix is defined and the recursive formula of high order transition matrix is presented. Then, the spatial entropy is obtained by computing the maximum eigenvalues of a sequence of transition matrices. The connecting operators are used to verify the positivity of the spatial entropy, which is important in determining the complexity of the set of admissible global patterns. The results are useful in studying a set of global stationary solutions in various Lattice Dynamical Systems and Cellular Neural Networks.