World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ANALYSIS OF TORUS BREAKDOWN INTO CHAOS IN A CONSTRAINT DUFFING VAN DER POL OSCILLATOR

    https://doi.org/10.1142/S0218127408020835Cited by:12 (Source: Crossref)

    The bifurcation structure of a constraint Duffing van der Pol oscillator with a diode is analyzed and an objective bifurcation diagram is illustrated in detail in this work. An idealized case, where the diode is assumed to operate as a switch, is considered.

    In this case, the Poincaré map is constructed as a one-dimensional map: a circle map. The parameter boundary between a torus-generating region where the circle map is a diffeomorphism and a chaos-generating region where the circle map has extrema is derived explicitly, without solving the implicit equations, by adopting some novel ideas. On the bifurcation diagram, intermittency and a saddle-node bifurcation from the periodic state to the quasi-periodic state can be exactly distinguished. Laboratory experiment is also carried out and theoretical results are verified.