World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART IX: QUASI-ERGODICITY

    https://doi.org/10.1142/S0218127408021853Cited by:17 (Source: Crossref)

    Our scientific odyssey through the theory of 1-D cellular automata is enriched by the definition of quasi-ergodicity, a new empirical property discovered by analyzing the time-1 return maps of local rules. Quasi-ergodicity plays a key role in the classification of rules into six groups: in fact, it is an exclusive characteristic of complex and hyper Bernoulli-shift rules. Besides introducing quasi-ergodicity, this paper answers several questions posed in the previous chapters of our quest. To start with, we offer a rigorous explanation of the fractal behavior of the time-1 characteristic functions, finding the equations that describe this phenomenon. Then, we propose a classification of rules according to the presence of Isles of Eden, and prove that only 28 local rules out of 256 do not have any of them; this result sheds light on the importance of Isles of Eden. A section of this paper is devoted to the characterization of Bernoulli basin-tree diagrams through modular arithmetic; the formulas obtained allow us to shorten drastically the number of cases to take into consideration during numerical simulations. Last but not least, we present some theorems about additive rules, including an analytical explanation of their scale-free property.