World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXAMPLES OF FORCED SYMMETRY-BREAKING TO HETEROCLINIC CYCLES AND NETWORKS IN THREE-DIMENSIONAL EUCLIDEAN-INVARIANT SYSTEMS

    https://doi.org/10.1142/S0218127409023767Cited by:0 (Source: Crossref)

    In [Parker et al., 2008a] group theory was employed to prove the existence of homoclinic cycles in forced symmetry-breaking of simple (SC), face-centered (FCC), and body-centered (BCC) cubic planforms. In this paper we extend this classification demonstrating that more elaborate heteroclinic cycles and networks can arise through the same process. Our methods naturally generate graphs that represent possible heteroclinic cycles and networks. The results do not depend on the representation of the symmetry group and are thus quite general.

    This study is motivated by pattern formation in three dimensions which occur in reaction–diffusion systems, certain nonlinear optical systems and the polyacrylamide methylene blue oxygen reaction. This work extends previous work by Parker et al. [2006, 2008a, 2008b] and Hou and Golubitsky [1997].