World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BIFURCATION ANALYSIS ON NONSMOOTH TORUS DESTRUCTION SCENARIO OF DELAYED-PWM SWITCHED BUCK CONVERTER

    https://doi.org/10.1142/S0218127409024013Cited by:7 (Source: Crossref)

    In this paper, we propose a qualitative and quantitative dynamical study about the evolution of nonsmooth torus in a Digital Delayed Pulse-Width Modulator (PWM) switched buck converter. We explain the birth and destruction of the torus by successive discontinuity induced bifurcations (DIBs). The Digital-PWM control is based on Zero Average Dynamics (ZAD) strategy and a one-period delay is included in the control law. The control parameter (ks) of the ZAD strategy can be varied in a large range, ideally (-∞, ∞). On these borders, the dynamical behavior is the same and thus an annulus-like parameter space is considered. Under variation of ks, the system gets closer to a codimension-two bifurcation point, where two simultaneous border-collision bifurcations (BC) meet. The system leaves the high-order periodic behavior and a high-order band torus appears. Wrinkles and nonsmoothness due to more and more successive border-collisions bifurcations cause the torus destruction in high-order band chaos with tent-map-like structures and Mandelbrot-like sets. Finally, the chaotic bands merge in one-band chaos. The switched converter is modeled as a piecewise linear system where an analytical expression of the Poincaré map is available. Characteristics as duality, symmetry and recurrent behavior are determined using additional numerical methods for the Poincaré map decomposition in periodic sequences.