World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ALGEBRAIC APPROACH TO DYNAMICS OF MULTIVALUED NETWORKS

    https://doi.org/10.1142/S0218127410025892Cited by:96 (Source: Crossref)

    Using semi-tensor product of matrices, a matrix expression for multivalued logic is proposed, where a logical variable is expressed as a vector, and a logical function is expressed as a multilinear mapping. Under this framework, the dynamics of a multivalued logical network is converted into a standard discrete-time linear system. Analyzing the network transition matrix, easily computable formulas are obtained to show (a) the number of equilibriums; (b) the numbers of cycles of different lengths; (c) transient period, the minimum time for all points to enter the set of attractors, respectively. A method to reconstruct the logical network from its network transition matrix is also presented. This approach can also be used to convert the dynamics of a multivalued control network into a discrete-time bilinear system. Then, the structure and the controllability of multivalued logical control networks are revealed.