DISCRETIZATION OF STATIONARY SOLUTIONS OF SPDE'S BY EXTERNAL APPROXIMATION IN SPACE AND TIME
Abstract
We consider a stochastic partial differential equation with additive noise satisfying a strong dissipativity condition for the nonlinear term such that this equation has a random fixed point. The goal of this article is to approximate this fixed point by space and space-time discretizations of a stochastic differential equation or more precisely, a conjugate random partial differential equation. For these discretizations external schemes are used. We show the convergence of the random fixed points of the space and space-time discretizations to the random fixed point of the original partial differential equation.
Dedicated to the memory of Valery S. Melnik