World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHAOTIC AND BIFURCATION DYNAMIC BEHAVIOR OF FUNCTIONALLY GRADED CURVED PANELS UNDER AERO-THERMAL LOADS

    https://doi.org/10.1142/S0218127411028738Cited by:19 (Source: Crossref)

    This paper presents the nonlinear analysis of functionally graded curved panels under high temperature supersonic gas flows. The aerothermoelastic governing equations are determined via Hamilton's variational principle. The von Karman nonlinear strain–displacement relations are used to account for large deflections. The material properties are assumed to be temperature-dependent and varying through the thickness direction according to a power law distribution in terms of the volume fractions of the constituent components. The panel is assumed to be infinitely long and simply supported. The Galerkin method is applied to convert the partial differential governing equation into a set of ordinary differential equations and the resulting system of nonlinear equations is solved through a numerical integration scheme. The effects of volume fraction index, curved panel height-rise, and aerodynamic pressure, in conjunction with the applied thermal loading, on the dynamical behavior of the panel are investigated. Regular and chaotic motions regime are determined through bifurcation analysis using Poincaré maps of maximum panel deflection, panel time history, phase-space and frequency spectra as qualitative tools, while Lyapunov's exponents and dimension are used as quantitative tools.