World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ANALYTICAL DYNAMICS OF PERIOD-m FLOWS AND CHAOS IN NONLINEAR SYSTEMS

    https://doi.org/10.1142/S0218127412500939Cited by:70 (Source: Crossref)

    In this paper, the analytical solutions for period-m flows and chaos in nonlinear dynamical systems are presented through the generalized harmonic balance method. The nonlinear damping, periodically forced, Duffing oscillator was investigated as an example to demonstrate the analytical solutions of periodic motions and chaos. Through this investigation, the mechanism for a period-m motion jumping to another period-n motion in numerical computation is found. In this problem, the Hopf bifurcation of periodic motions is equivalent to the period-doubling bifurcation via Poincare mappings of dynamical systems. The stable and unstable period-m motions can be obtained analytically. Even more, the stable and unstable chaotic motions can be achieved analytically. The methodology presented in this paper can be applied to other nonlinear vibration systems, which is independent of small parameters.