World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

OPTIMIZATION OF QUALITY FACTOR IN PHOTONIC CRYSTAL CAVITIES THROUGH FINITE DIFFERENCE TIME DOMAIN AND MULTIPOLE EXPANSION TECHNIQUE

    https://doi.org/10.1142/S0218863513500409Cited by:1 (Source: Crossref)

    Local density of photonic states calculation based on multipole expansion method is a powerful tool for studying spontaneous emission and calculation of photon confinement in photonic crystal cavities. Using multipole expansion method, we calculate local density of states and quality factor of a two-dimensional three angle photonic crystal cavity. We also compare this quality factor result with the one calculated using finite difference time domain of a pulse response. It turns out that the local density of states calculation is more accurate and computationally less expensive. It is shown that shifting and changing the size of neighboring cylinders in the vicinity of photonic crystal cavity has a large impact on the mode volume and confinement. It is also described how the increasing of quality factor can be split up into local optimization of neighboring rods and the effect of increasing the number of photonic crystal layers, which exponentially increases the quality factor. This finding strongly suggests that the number of layers can be excluded from an optimization procedure. We also present structural design rules and geometrical freedom contour plots for the neighboring cylinders. These design rules can be used in further optimization of photonic crystal cavities.