World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MULTIPLE BIFURCATIONS IN A PREDATOR–PREY SYSTEM OF HOLLING AND LESLIE TYPE WITH CONSTANT-YIELD PREY HARVESTING

    https://doi.org/10.1142/S0218127413501642Cited by:71 (Source: Crossref)

    The bifurcation analysis of a predator–prey system of Holling and Leslie type with constant-yield prey harvesting is carried out in this paper. It is shown that the model has a Bogdanov–Takens singularity (cusp case) of codimension at least 4 for some parameter values. Various kinds of bifurcations, such as saddle-node bifurcation, Hopf bifurcation, repelling and attracting Bogdanov–Takens bifurcations of codimensions 2 and 3, are also shown in the model as parameters vary. Hence, there are different parameter values for which the model has a limit cycle, a homoclinic loop, two limit cycles, or a limit cycle coexisting with a homoclinic loop. These results present far richer dynamics compared to the model with no harvesting. Numerical simulations, including the repelling and attracting Bogdanov–Takens bifurcation diagrams and corresponding phase portraits, and the existence of two limit cycles or an unstable limit cycle enclosing a stable multiple focus with multiplicity one, are also given to support the theoretical analysis.

    Dedicated to Professor Zhujun Jing on the occasion of her 70th birthday