World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Critical Transition Analysis of the Deterministic Wind-Driven Ocean Circulation — A Flux-Based Network Approach

    https://doi.org/10.1142/S0218127414300079Cited by:10 (Source: Crossref)

    A new method for constructing complex networks from fluid flow fields is proposed. The approach focuses on spatial properties of the flow field, namely, on the topology of the streamline field. The network approach is applied to a model of the wind-driven ocean circulation, which exhibits the prototype of a critical transition, that is, a back-to-back saddle-node bifurcation related to two separate dynamical regimes. The network analysis enables a structural characterization of, on the one hand, the viscous regime as a weakly-connected and highly-assortative regime, and, on the other hand, of the inertial regime as a highly-connected and weakly-assortative regime. Moreover, the network analysis enables a robust early-warning signal of the critical transition emerging from the viscous regime: The upcoming global regime change induced by the critical transition may be anticipated by a drastic decrease in the overall closeness of the network, which reflects a preceding local regime change in the flow field. Hence, the results support the application of network-based topology measures complementary to time-series based statistical properties as leading indicators of critical transitions.