World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Bifurcation and Chaos in Synchronous Manifold of a Forest Model

    https://doi.org/10.1142/S0218127415501576Cited by:0 (Source: Crossref)

    In previous papers [Isagi et al., 1997; Satake & Iwasa, 2000], a forest model was proposed. The authors demonstrated numerically that the mature forest could possibly exhibit annual reproduction (fixed point synchronization), periodic and chaotic synchronization as the energy depletion constant d is gradually increased. To understand such rich synchronization phenomena, we are led to study global dynamics of a piecewise smooth map fd,β containing two parameters d and β. Here d is the energy depletion quantity and β is the coupling strength. In particular, we obtain the following results. First, we prove that fd,0 has a chaotic dynamic in the sense of Devaney on an invariant set whenever d>1, which improves a result of [Chang & Chen, 2011]. Second, we prove, via the Schwarzian derivative and a generalized result of [Singer, 1978], that fd,β exhibits the period adding bifurcation. Specifically, we show that for any β>0, fd,β has a unique global attracting fixed point whenever d1(β+1)(β+1β+2)β (<1) and that for any β>0, fd,β has a unique attracting period k+1 point whenever d is less than and near any positive integer k. Furthermore, the corresponding period k+1 point instantly becomes unstable as d moves pass the integer k. Finally, we demonstrate numerically that there are chaotic dynamics whenever d is in between and away from two consecutive positive integers. We also observe the route to chaos as d increases from one positive integer to the next through finite period doubling.