World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Mechanistic Stochastic Ricker Model: Analytical and Numerical Investigations

    https://doi.org/10.1142/S021812741650067XCited by:5 (Source: Crossref)

    The Ricker model is one of the simplest and most widely-used ecological models displaying complex nonlinear dynamics. We study a discrete-time population model, which is derived from simple assumptions concerning individual organisms’ behavior, using the “site-based” approach, developed by Brännström, Broomhead, Johansson and Sumpter. In the large-population limit the model converges to the Ricker model, and can thus be considered a mechanistic version of the Ricker model, derived from basic ecological principles, and taking into account the demographic stochasticity inherent to finite populations. We employ several analytical and precise numerical methods to study the model, showing how each approach contributes to understanding the model’s dynamics. Expressing the model as a Markov chain, we employ the concept of quasi-stationary distributions, which are computed numerically, and used to examine the interaction between complex deterministic dynamics and demographic stochasticity, as well as to calculate mean times to extinction. A Gaussian Markov chain approximation is used to obtain quantitative asymptotic approximations for the size of fluctuations of the stochastic model’s time series around the deterministic trajectory, and for the correlations between successive fluctuations. Results of these approximations are compared to results obtained from quasi-stationary distributions and from direct simulations, and are shown to be in good agreement.