Dynamics of a Class of Nonautonomous Lorenz-Type Systems
Abstract
The dynamical properties of a kind of Lorenz-type systems with time-varying parameters are studied. The time-varying ultimate bounds are estimated, and a simple method is provided to generate strange attractors, including both the strange nonchaotic attractors (SNAs) and chaotic attractors. The approach is: (i) take an autonomous system with an ultimate bound from the Lorenz family; (ii) add at least two time-varying parameters with incommensurate frequencies satisfying certain conditions; (iii) choose the proper initial position and time by numerical simulations. Three interesting examples are given to illustrate this method with computer simulations. The first one is derived from the classical Lorenz model, and generates an SNA. The second one generates an SNA or a Lorenz-like attractor. The third one exhibits the coexistence of two SNAs and a Lorenz-like attractor. The nonautonomous Lorenz-type systems present more realistic models, which provide further understanding and applications of the numerical analysis in weather and climate predication, synchronization, and other fields.