World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Stripe and Spot Patterns for General Gierer–Meinhardt Model with Common Sources

    https://doi.org/10.1142/S0218127417500183Cited by:10 (Source: Crossref)

    This paper focuses on the Turing patterns in the general Gierer–Meinhardt model of morphogenesis. The stability analysis of the equilibrium for the associated ODE system is carried out and the stability conditions are obtained. Furthermore, we perform a detailed Hopf bifurcation analysis for this system. The results show that the equilibrium undergoes a supercritical Hopf bifurcation in certain parameter range and the bifurcated limit cycle is stable. With added diffusions, we then show that both the stable equilibrium and the Hopf periodic solution experience Turing instability with unequal spatial diffusions and obtain the instability conditions. Numerical simulations are given to illustrate the theoretical analysis, which show that the Turing patterns are of either spot or stripe type.

    This work was supported by the National Natural Science Foundation of China (Nos. 10971009, 10771196), the National Scholarship Fund (No. 201303070222) and the Fundamental Research Funds for the Central Universities.