Nonresonant Double Hopf Bifurcation in Toxic Phytoplankton–Zooplankton Model with Delay
Abstract
This paper investigates a toxic phytoplankton–zooplankton model with Michaelis–Menten type phytoplankton harvesting. The model has rich dynamical behaviors. It undergoes transcritical, saddle-node, fold, Hopf, fold-Hopf and double Hopf bifurcation, when the parameters change and go through some of the critical values, the dynamical properties of the system will change also, such as the stability, equilibrium points and the periodic orbit. We first study the stability of the equilibria, and analyze the critical conditions for the above bifurcations at each equilibrium. In addition, the stability and direction of local Hopf bifurcations, and the completion bifurcation set by calculating the universal unfoldings near the double Hopf bifurcation point are given by the normal form theory and center manifold theorem. We obtained that the stable coexistent equilibrium point and stable periodic orbit alternate regularly when the digestion time delay is within some finite value. That is, we derived the pattern for the occurrence, and disappearance of a stable periodic orbit. Furthermore, we calculated the approximation expression of the critical bifurcation curve using the digestion time delay and the harvesting rate as parameters, and determined a large range in terms of the harvesting rate for the phytoplankton and zooplankton to coexist in a long term.