World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Technique for Studying a Class of Fractional-Order Nonlinear Dynamical Systems

    https://doi.org/10.1142/S0218127417501449Cited by:9 (Source: Crossref)

    In this work, we propose a technique to study nonlinear dynamical systems with fractional-order. The main idea of this technique is to transform the fractional-order dynamical system to the integer one based on Jumarie’s modified Riemann–Liouville sense. Many systems in the interdisciplinary fields could be described by fractional-order nonlinear dynamical systems, such as viscoelastic systems, dielectric polarization, electrode-electrolyte polarization, heat conduction, resistance-capacitance-inductance (RLC) interconnect and electromagnetic waves. To deal with integer order dynamical system it would be much easier in contrast with fractional-order system. Two systems are considered as examples to illustrate the validity and advantages of this technique. We have calculated the Lyapunov exponents of these examples before and after the transformation and obtained the same conclusions. We used the integer version of our example to compute numerically the values of the fractional-order and the system parameters at which chaotic and hyperchaotic behaviors exist.