Dynamic Analysis of a Bistable Bi-Local Active Memristor and Its Associated Oscillator System
Abstract
This paper proposes a new type of memristor with two distinct stable pinched hysteresis loops and twin symmetrical local activity domains, named as a bistable bi-local active memristor. A detailed and comprehensive analysis of the memristor and its associated oscillator system is carried out to verify its dynamic behaviors based on nonlinear circuit theory and Hopf bifurcation theory. The local-activity domains and the edge-of-chaos domains of the memristor, which are both symmetric with respect to the origin, are confirmed by utilizing the mathematical cogent theory. Finally, the subcritical Hopf bifurcation phenomenon is identified in the subcritical Hopf bifurcation region of the memristor.