World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Pattern Formation and Oscillations in Reaction–Diffusion Model with p53-Mdm2 Feedback Loop

    https://doi.org/10.1142/S0218127419300404Cited by:12 (Source: Crossref)

    P53 plays a vital role in DNA repair, and several mathematical models of the p53-Mdm2 feedback loop were used to explain the biological mechanism. In this paper, a p53-Mdm2 model described by a delay reaction–diffusion equation is studied both analytically and numerically. This research aims to provide an understanding of the impact of delay and sustained pressure on the p53-Mdm2 dynamics and tries to explain some biological mechanism. It is found that the type of pattern formation is affected by Hopf bifurcation. Also, the amplitude equation in delay diffusive system is derived and it is shown that sustained stress plays an essential role in the function of p53. Finally, simulation is used to verify the theoretical results.