World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Oscillations Induced by Quiescent Adult Female in a Reaction–Diffusion Model of Wild Aedes Aegypti Mosquitoes

    https://doi.org/10.1142/S021812741950189XCited by:5 (Source: Crossref)

    This paper takes the reaction–diffusion approach to deal with the quiescent females phase, so as to describe the dynamics of invasion of aedes aegypti mosquitoes, which are divided into three subpopulations: eggs, pupae and female. We mainly investigate whether the time of quiescence (delay) in the females phase can induce Hopf bifurcation. By means of analyzing the eigenvalue spectrum, we show that the persistent positive equilibrium is asymptotically stable in the absence of time delay, but loses its stability via Hopf bifurcation when time delay crosses some critical value. Using normal form and center manifold theory, we investigate the stability of the bifurcating branches of periodic solutions and the direction of the Hopf bifurcation. Numerical simulations are carried out to support our theoretical results.