Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Hearts are Poised Near the Edge of Chaos

    https://doi.org/10.1142/S0218127420300232Cited by:13 (Source: Crossref)

    The Cardiac Purkinje Fiber (CPF) is the last branch of the heart conduction system, which is meshed with the normal ventricular myocyte. Purkinje fiber plays a key role in the occurrence of ventricular arrhythmia and maintenance. Does the heart Purkinje fiber cells have the same memory function as the cerebral nerve? In this paper, the cardiac Hodgkin–Huxley equation is taken as the object of study. In particular, we find that the potassium ion-channel K and the sodium ion-channel Na are memristors. We also derive the small-signal equivalent circuits about the equilibrium points of the CPF Hodgkin–Huxley model. According to the principle of local activity, the regions of Locally-Active domain, Edge of Chaos domain and Locally-Passive domain are partitioned under parameters (a,b), and the domain exhibiting the normal human heartbeat frequency range (Goldilocks Zone) is identified. Meanwhile, the Super-Critical Hopf bifurcation of the CPF Hodgkin–Huxley model is identified. Finally, the migration changes between different state domains under external current Iext excitation are analyzed in detail.

    All of the above complex nonlinear dynamics are distilled and mapped geometrically into a surreal union of intersecting two-dimensional manifolds, dubbed the Hodgkin–Huxley’smagic roof.