World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Inverse Problem in the Kuramoto Model with a Phase Lag: Application to the Sun

    https://doi.org/10.1142/S0218127420501655Cited by:2 (Source: Crossref)

    We solve the inverse problem in the Kuramoto model with three nonidentical oscillators and a phase lag. The model represents a three-cell-in-depth radial profile of the solar meridional circulation in each solar hemisphere and describes the synchronization between the two components (toroidal and poloidal) of the solar magnetic field. We reconstruct natural frequencies of the top and the bottom oscillators from the evolution of their phases when the oscillators are phase-locked. The phase-locking allows to solve the inverse problem when the phase of the middle oscillator is not available. We present the exact solution and investigate its stability. The model reveals a crucial role of the phase lag in the inverse problem solution. We apply the model to the reconstruction of the deep meridional circulation of the Sun and discuss peculiarities of its evolution in terms of solar dynamo.

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos