Nonlinear Oscillations of Nonlinear Damping Gyros: Resonances, Hysteresis and Multistability
Abstract
This paper addresses the issues on the dynamics of nonlinear damping gyros subjected to a quintic nonlinear parametric excitation. The fixed points and their stability are analyzed for the autonomous gyros equation. The number of fixed points of the system varies from one to six. The approximate equation of gyros is considered by expanding the nonlinear restoring force and parametric excitation for the study of the dynamics of gyros. Amplitude and frequency of possible resonances are found by using the multiple scales method. Also obtained are the principal parametric resonance and orders 4 and 6 subharmonic resonances. The stability conditions for each of these resonances are also obtained. Chaotic oscillations, multistability, hysteresis, and coexisting attractors are found using the bifurcation diagrams, the Lyapunov exponents, the phase portraits, the Poincaré section and the time histories. The effects of the damping parameter, the angular spin velocity and the parametric nonlinear excitation are analyzed. Results obtained by using the approximate gyros equation are compared to the dynamics obtained with the exact equation of gyros. The analytical investigations are complemented by numerical simulations.