Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Characteristic Times for the Fermi–Ulam Model

    https://doi.org/10.1142/S0218127421300044Cited by:1 (Source: Crossref)

    The mean Poincaré recurrence time as well as the Lyapunov time are measured for the Fermi–Ulam model. It is confirmed that the mean recurrence time is dependent on the size of the window chosen in the phase space where particles are allowed to return. The fractal dimension of the region is determined by the slope of the recurrence time against the size of the window and two numerical values are measured: (i) μ=1 confirming normal diffusion for chaotic regions far from periodic domains and (ii) μ=2 leading to anomalous diffusion measured inside islands of stability and invariant curves corresponding to regular orbits, a signature of local trapping of an ensemble of particles. The Lyapunov time is the inverse of the Lyapunov exponent. Therefore, the Lyapunov time is measured over different domains in the phase space through a direct determination of the Lyapunov exponent.