World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Phenomena of Bifurcation and Chaos in the Dynamically Loaded Hyperelastic Spherical Membrane Based on a Noninteger Power-Law Constitutive Model

    https://doi.org/10.1142/S0218127421300159Cited by:4 (Source: Crossref)

    The phenomena of bifurcation and chaos are studied for a class of second order nonlinear nonautonomous ordinary differential equations, which may be formulated by the nonlinear radially symmetric motion of the dynamically loaded hyperelastic spherical membrane composed of the Rivlin–Saunders material model with a noninteger power-law exponent. Firstly, based on the variational principle, the governing equation describing the problem is obtained with the spherically symmetric deformation assumption. Then, the dynamic characteristics of the system are qualitatively analyzed in detail in terms of different values of material parameters. Particularly, for a given constant load, the parameter spaces describing the bifurcation behaviors of equilibrium curves are established and the characteristics of equilibrium points are presented; for a periodically perturbed load, the quasi-periodic and chaotic behaviors are discussed for the systems with two and three equilibrium points, respectively.