World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Slow–Fast Behaviors and Their Mechanism in a Periodically Excited Dynamical System with Double Hopf Bifurcations

    https://doi.org/10.1142/S0218127421300226Cited by:10 (Source: Crossref)

    This paper focuses on the influence of two scales in the frequency domain on the behaviors of a typical dynamical system with a double Hopf bifurcation. By introducing an external periodic excitation to the normal form of the vector field with double Hopf bifurcation at the origin and taking the exciting frequency far less than the natural frequency, a theoretical model with two scales in the frequency domain is established. Regarding the whole exciting term as a slow-varying parameter leads to a generalized autonomous system, in which the equilibrium branches and their bifurcations with the variation of the slow-varying parameter can be derived. With the increase of the exciting amplitude, different types of bifurcations may be involved in the generalized autonomous system, resulting in several qualitatively different forms of bursting attractors, the mechanism of which is presented by overlapping the transformed phase portraits and the bifurcations of the equilibrium branches. It is found that the single mode 2D torus may evolve to the bursting attractors with mixed modes, in which the trajectory alternates between the single mode oscillations and the mixed mode oscillations. Furthermore, the transitions between the quiescent states and the spiking states may not occur exactly at the bifurcation points because of the slow passage effect, while Hopf bifurcations may cause different forms of repetitive spiking oscillations.