Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Construction of One-Dimensional Nonuniform Number Conserving Elementary Cellular Automata Rules

    https://doi.org/10.1142/S0218127421500723Cited by:3 (Source: Crossref)

    An effort to study one-dimensional nonuniform elementary number conserving cellular automata (NCCA) rules from an exponential order rule space of cellular automata is an excellent computational task. To perform this task effectively, a mathematical heritage under the number of conserving functions over binary strings of length n has been highlighted along with their number conserving cellular automata rules (either uniform or nonuniform). A basic approach for the construction of some feasible nonuniform NCCA rules of any finite configuration with the assistance of nine uniform elementary CA rules has been investigated. From our construction procedure, recurrence equations are formulated as suitably solved to ascertain the actual range of NCCA rules. The state transition diagrams (STDs) of NCCA rules are analyzed. While classifying the binary strings through STDs, we found a fascinating optical insight that equal weight strings from a class whose cardinality is the same as the binomial coefficient C(n,k) where n is the length and k is the weight of the binary string.