World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Lossless Compression and Encryption Method for Remote Sensing Image Using LWT, Rubik’s Cube and 2D-CCM

    https://doi.org/10.1142/S0218127422501498Cited by:7 (Source: Crossref)

    This paper proposes a lossless encryption–compression algorithm for large-scale remote sensing images. Firstly, the red, green and blue components of color image are compressed by a lossless predictive encoding. Then, the lifting wavelet transform (LWT) is used to decompose the encoding results. And a new Rubik’s cube transformation is introduced to scramble the decomposed coefficients, which uses the chaotic sequence generated by 2D Cubic–Chebyshev map (2D-CCM). The initial values of 2D-CCM are obtained from the chi-square test values of the three components, which leads to the algorithm related to the plaintext image. After that, the scrambling coefficients are thresholding, and the position sequences generated in the process are encrypted and compressed by the proposed encrypted run-length encoding (E-RLE). The processed coefficients are further compressed by Huffman encoding. At the end, the final results are obtained by a novel helix diffusion which is related to the chaotic sequence. Experimental results show that, this algorithm achieves higher lossless compression ratio with lower time complexity, and the encryption scheme has higher security.